Tetrahymena thermophila

not annotated - annotated - LINNAEUS only

20663713

Conservation of POPs, the plant organellar DNA polymerases, in eukaryotes.

POPs, plant organellar DNA polymerases, have been isolated from various photosynthetic eukaryotes. Previously, we purified the native POP of Cyanidioschyzon merolae (CmPOP) from whole cellular extracts and showed that CmPOP has DNA polymerase activity with a high processivity and a 3'-5' exonuclease activity, and its expression is related to cell proliferation. In rice, the recombinant protein of POP has activities found in CmPOP, and high fidelity of POP has also been demonstrated. These facts suggest that POPs are involved in the replication of organellar genomes. POPs are also conserved in most non-opisthokont eukaryotes, which lack DNA polymerase gamma (Polgamma), a mitochondrial replication enzyme in opisthokonts (fungi and animals). The ciliate Tetrahymena thermophila contains a single gene for a putative POP (TetPOP). Immunoblot analysis demonstrated that TetPOP is localized in mitochondria, and TetPOP has been purified from mitochondria through a column chromatography series. Sensitivity to phosphonoacetate and dideoxyTTP was examined in POPs (TetPOP and CmPOP) or POP-containing organelles (chloroplasts of Arabidopsis) and other polymerases (DNA polymerase I and mitochondria of rat liver, which contain Polgamma), and the results suggest that high sensitivity to phosphonoacetate is unique to POPs in Family-A DNA polymerases. Finally, we propose a model for the succession of organellar DNA polymerases.

20708435

Barcoding Tetrahymena: discriminating species and identifying unknowns using the cytochrome c oxidase subunit I (cox-1) barcode.

DNA barcoding using the mitochondrial cytochromecoxidase subunit I (cox-1) gene has recently gained popularity as a tool for species identification of a variety of taxa. The primary objective of our research was to explore the efficacy of using cox-1 barcoding for species identification within the genus Tetrahymena. We first increased intraspecific sampling for Tetrahymena canadensis, Tetrahymena hegewischi, Tetrahymena pyriformis, Tetrahymena rostrata, Tetrahymena thermophila, and Tetrahymena tropicalis. Increased sampling efforts show that intraspecific sequence divergence is typically less than 1%, though it may be more in some species. The barcoding also showed that some strains might be misidentified or mislabeled. We also used cox-1 barcodes to provide species identifications for 51 unidentified environmental isolates, with a success rate of 98%. Thus, cox-1 barcoding is an invaluable tool for protistologists, especially when used in conjunction with morphological studies.

21601521

Inactivation of a macronuclear intra-S-phase checkpoint in Tetrahymena thermophila with caffeine affects the integrity of the micronuclear genome.

Aphidicolin (APH), an inhibitor of DNA polymerase alpha, arrested cell divisions in Tetrahymena thermophila. Surprisingly, low concentrations of APH induced an increase of macronuclear DNA content and cell size in non-dividing cells. In spite of the cell size increase, most proliferation of basal bodies, ciliogenesis and development of new oral primordia were prevented by the APH treatment. The division arrest induced by APH was partly overridden by caffeine (CAF) treatment, which caused the fragmentation ("pulverization") of the chromosomes in G2 micronuclei. Somatic progeny of dividers with pulverized micronuclei (APH+CAF strains) contained aneuploid and amicronucleate cells. The amicronucleate cells, after losing their oral structures and most of their cilia, and undergoing progressive disorganization of cortical structures, assumed an irregular shape ("crinkled") and were nonviable. "Crinkled" cells were not formed after APH + CAF treatment of the amicronuclear BI3840 strain, which contains some mic-specific sequences in its macronucleus. Most of the APH +CAF strains had a typical "*"- like conjugation phenotype: they did not produce pronuclei, but received them unilaterally from their mates and retained old macronuclei. However, 4 among 100 APH+CAF clones induced arrest at meiotic metaphase I in their wt mates. It is likely that the origin of such clones was enhanced by chromosome pulverization.